The Laboratory of Organic Compounds Analysis, which has been operating since 2000, is one of the five organizational units of the Department of Environmental Monitoring in the Central Mining Institute. The Laboratory, together with other laboratories and the rest of the Institute, is working by a certified Integrated Management System that meets the requirements of PN-EN ISO 9001, PN-N-18001 and PN-EN ISO 14001.
We are a group of qualified chemists with years of experience and professionalism is our advantage. We have constantly developed perfecting research team over the years. We have created many innovative analytical solutions. The management system is according to PN-EN ISO / IEC 17025: 2005. Our credibility and unquestionable competence are confirmed by a testing laboratory accreditation No. AB 145 by the Polish Centre for Accreditation. We guarantee reliable results for the most demanding customer.
The Laboratory is also involved in the work of the Polish Committee for Standardization section.
Laboratory makes difficult environmental studies. We can determinant various types of organic compounds in samples. We research to the chemical industry, waste management, mining, environmental engineering, construction, energy, food industry and agriculture. We also make non-commercial researches which are require a scientific approaching to the problem.
We worked with chromatographs equipped with detectors, such as detector mass spectrometry (GC-MS), flame ionization detector (GC-FID), electron capture detector (GC-ECD) detector, thermo-Conductive (GC-TCD) detector, UV-VIS spectrophotometer (HPLC / UV-VIS), a diode-array detector (HPLC-DAD), fluorescence detector (HPLC-FLD).
We use extraction for sample preparation. We have equipment for solid phase extraction (SPE) and the accelerated solvent extraction (ASE).
The laboratory makes tests on various types of matrices, including:
- groundwater and surface water;
- drinking water, mineral water, medicinal water and spring water;
- rain water (waste rain);
- waste water (industrial and municipal landfill leachate);
- ground and soil;
- wastes;
- building materials, aggregates, sediments, dusts;
- liquid mixtures of solvents and diluents;
- plants and food products.
The laboratory performes researches the following parameters (research in the scope of the accreditation PCA):
a) in water and wastewater:
- trihalomethanes THM: trichloromethane, bromodichloromethane, chlorodibromometan, tribomomethane and carbon tetrachloride, trichlorethylene (TRI ), tetrachlorethylene (PER), 1,2-dichloroethane (EDC), dichloromethane (DCM);
- index of mineral oil (petroleum hydrocarbons);
- polycyclic aromatic hydrocarbons (PAH);
- trichlorobenzenes (TCB);
- volatile aromatics (BTEX) in water and waste water;
- organochlorine pesticides, organophosphorus pesticides, organonitrogen pesticides.
b) in grounds and soils:
- polycyclic aromatic hydrocarbons (PAH);
- mineral oil (C10-C40);
- volatile aromatics (BTEX and styrene).
The Laboratory also performes researches out of accreditation scope:
- gasoline in environmental samples;
- extraction yield of solid samples polar and non-polar solvents;
- composition of solvents and diluents;
- polychlorinated biphenyls (PCBs) in water, wastewater, soil and grounds.
- Energy wastes, coal mining wastes, industrial and municipal wastes;
- Grounds;
- Soils;
- Mineral aggregates;
- The binders;
- Solid fuels;
- Alternative fuels;
- Solid biofuels.
We also have huge experience in working with other objects which are not in scope of the accreditation yet:
- Brown coals, cokes, atmospheric dust, dust filters with drown air, mineral resources, different types of sediments and other environmental samples.
The Laboratory performes tests in scope of accredited by the Polish Center for Accreditation:
- Moisture content analysis and total dry matter;
- Ash content and volative matter;
- Nitrogen, chlorine, chlorides, sulfur, hydrogen;
- Total organic carbon and inorganic carbon;
- Heat of combustion and calorific value;
- Chemical compositons: SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, SO3, TiO2, P2O5;
- Trace elements: arsenic As, barium Ba, cadmium Cd, cobalt Co, chromium Cr, copper Cu, Hg mercury, manganese Mn, molybdenum Mo, nickel Ni, lead Pb, antimony Sb, selenium Se, tin Sn, and Zn
- Free CaO;
- Ammonium compounds (ammonium nitrogen);
- Size distribution by sieving and laser diffraction;
- The pH of the aqueous extracts.
Tests out of scope an accreditation are:
- True density, bulk density, water absorption, resistance to frost, specific surface area;
- Moisture of the distillation, volatile components;
- Available phosphorus, reactive silicon dioxide, sulfates soluble in acid and water;
- Fluorine, free cyanide and fixed cyanide, phenols, sulfides;
- Trace elements: boron B, bromine Br, beryllium Be, vanadium V, Sr strontium, thallium Tl;
- Rare earth metals: scandium Sc, yttrium Y, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, samarium Sm, europium Eu, gadolinium Gd, terbium Tb, dysprosium Dy, holmium Ho, erbium Er, thulium Tm, ytterbium Yb , lutetium Lu;
- Stearin, microspheres;
- The chemical resistance of the materials used in the production;
- Other according to customer.
Advanced Energy Technology Laboratory.
Autosorb iQ gas and steam sorption analyzer.
Determination of the surface area, total pore volume and distribution of pore size of solids. Measuring range: specific surface area from 0.0005 m 2 / g, pore diameter 0.35-500 nm, pore volume from 0.0001 cc / g.
DSC Q2000 Differential Scanning Calorimeter
Determination of the heat transfer associated with the phase change of materials as a function of time and temperature. Qualitative and quantitative determination of heat absorbed or released in the phase transformation processes of materials, such as melting, oxidation or other heat-related changes. Temperature range: -90C ÷ 550C.
Division of Ecological Researches is a part of Department of Environmental Monitoring in Central Mining Institute. Institute has implemented certified Integrated Management System according the requirements of PN-EN ISO 9001, PN-N-18001 and PN-EN ISO 14001. The credibility of research and technical competence of the Laboratory has been also certified by accredited No. AB 145.
Division performs field works including:
- Collecting of environmental samples of grounds, soils, water and wastewater;
- Descriptions of geological profiles;
- Researching of permeability index (filtration);
- Researching of the flow of watercourses and filtration coefficient of ground surface;
- Study stability of landfill slopes.
Collecting and transport of samples is carried around the Poland. A team of experienced employees samplers, who are equipped with specialized sets, guarantees high quality of services provided under all conditions.
Division of Ecological Researches offers monitoring of environmental according Polish law. We guarantee the participation and assistance in the process of obtaining administrative decisions.
Division of Ecological Researches prepares evaluations, expert reports and opinions of:
- Contamination of soils and grounds in relation to quality standards;
- State of the investment areas;
- The quality of surface water and groundwater;
- Basic characteristics of the waste to deposition;
- Economic deposition of waste underground and on the ground surface;
- The possibility of using recycled aggregates;
- Determine the suitability of mineral wastes for their use as aggregates in building, road construction and as a raw material in industries;
- The possibility of using various types of waste as alternative fuels;
- The possibility of using municipal sewage sludge;
- Binders used in underground construction.
Division of Ecological Researches uses modern equipment and uses highly specialized software to interpretation of the measurement results and visualization.
Employees working in the Division of Ecological Researches have wide expertise and years of experience. The team includes specialists in geology, hydrogeology, physics and environmental protection. They have powers of experts from a list of Silesian Governor for the protection of nature, the preparation of environmental impact assessments, as well as the powers of the Minister of the Environment in the field of hydrogeology.
Scope of activities:
- Diagnosis of organizational, competency and social determinants of safety in work environment - especially in high-risk enterprises (own research tools verified by the PBS project);
- Diagnosis of safety culture state in enterprise (own research tools - verified in coal and copper mining);
- Safety culture improving in enterprise using its own method, which effectiveness has been proven in mining company;
- Identification of risky behaviors of employees and their causes;
- Identification of factors (characteristics / variables) relevant for psychoacoustic and subjective reception of noise nuisance - according to methodology developed for subjective assessment of noise nuisance;
- Research on structural mismatches in labour markets;
- Research on demographic change impact on labour markets;
- Examination of professional qualifications demand in enterprise;
- Apply of managing diversity method in enterprise.
Division of Ecological Researches performs field works including:
- contamination of soils and grounds in relation to quality standards;
- state of the investment areas;
- the quality of surface water and groundwater;
- basic characteristics of the waste to deposition;
- economic deposition of waste underground and on the ground surface;
- the possibility of using recycled aggregates;
- determine the suitability of mineral wastes for their use as aggregates in building, road construction and as a raw material in industries;
- the possibility of using various types of waste as alternative fuels;
- the possibility of using municipal sewage sludge;
- binders used in underground construction.
Collecting and transport of samples is carried around whole Poland. A team of experienced employees, who are equipped with specialized sets, guarantees high quality of services provided under all conditions.
- Reports of environmental impact assessments with participation in administrative proceedings in order to obtain the environmental decision;
- Initial reports;
- Environmental reviews;
- Integrated permits;
- Expertise;
- Evaluation and opinions on the protection and opportunities for environmentally safe use of waste on the surface and underground mining excavations and recovered raw materials;
- Environmental opinions on binder materials and formulations used in underground mines in the area of voluntary certification for safety mark ""B"";
- Research (identification), and disposal of hazardous waste, eligibility codes corresponding to the hazardous waste or non – hazardous waste;
- Physicochemical analysis of materials, including waste used as an additive for fuels, alternative fuels and renewable fuels;
- Comprehensive monitoring of landfills in the full range of phases resulting from their operation – pre-operational, the operational and the after-closure;
- A comprehensive studies of soil quality and the ground quality to making decisions about way of using or remediation in accordance with applicable standards, together with an assessment of their chemism and their health risks;
- Monitoring the state of environment before investments and also monitoring the state of the degraded post-industry environment (and post-mining) to make decisions about restoration or further use;
- Evaluates corrosivity of water against concrete and steel (on the basis of physical and chemical analysis) and performs tests of water used to prepare concrete, etc.
Highly qualified scientific or technical staff and modern equipment ensure high quality and reliability of research.
Division of Ecological Researches performs field works including:
- collecting of environmental samples of grounds, soils, water and wastewater;
- descriptions of geological profiles;
- researching of permeability index (filtration);
- researching of the flow of watercourses and filtration coefficient of ground surface;
- study stability of landfill slopes.
Collecting and transport of samples is carried around whole Poland. A team of experienced employees, who are equipped with specialized sets, guarantees high quality of services provided under all conditions.
- Reports of environmental impact assessments with participation in administrative proceedings in order to obtain the environmental decision;
- Initial reports;
- Environmental reviews;
- Integrated permits;
- Expertise, evaluation and opinions on the protection and opportunities for environmentally safe use of waste on the surface and underground mining excavations and recovered raw materials;
- Environmental opinions on binder materials and formulations used in underground mines in the area of voluntary certification for safety mark ""B"";
- Research (identification), and disposal of hazardous waste, eligibility codes corresponding to the hazardous waste or non - hazardous waste;
- Physicochemical analysis of materials, including waste used as an additive for fuels, alternative fuels and renewable fuels;
- Comprehensive monitoring of landfills in the full range of phases resulting from their operation – pre-operational, the operational and the after-closure;
- A comprehensive studies of soil quality and the ground quality to making decisions about way of using or remediation in accordance with applicable standards, together with an assessment of their chemism and their health risks;
- Monitoring the state of environment before investments and also monitoring the state of the degraded post-industry environment (and post-mining) to make decisions about restoration or further use;
- Evaluates corrosivity of water against concrete and steel (on the basis of physical and chemical analysis) and performs tests of water used to prepare concrete, etc.
Laboratory of Water and Wastewater Analysis evaluates corrosivity of water against concrete and steel (on the basis of physical and chemical analysis) and performs tests of water used to prepare concrete. Laboratory also carries out the migration test (determination of the effect of material for drinking water).
Infrared spectrometer with FT-IR transformation.
- Measurement of infrared spectra in the infrared spectral range: distant 50-400 cm-1, center 400-4000 cm-1 and close to 4000-14000 cm-1;
- Quantitative measurements by transmission method of solid samples in pellets KBr or HDPE and liquid samples in a removable liquid cuvette;
- Rapid powder sample measurements in the midrange IR filter;
- Fast measurements of liquid, solid and powder samples in a high pressure ATR in the range of 50-400 cm-1, center 400-4000 Cm-1 infrared;
- Measure infrared spectra in the near infrared range with the sphere integrating with the InGaAs detector;
- Measurement of DRIFT powder samples during their heating in a high temperature reaction chamber at controlled temperature from room temperature to 900°C in vacuum or atmospheric gas up to approximately 750°C;
- Measurement of gas samples in central infrared 4000 - 400 cm-1 in a 0.75 liter gas cuvette with varying optical path lengths of 1.5 m to 8 m and using a DTGS detector or high-sensitivity MCT-A detector (within 600 cm-1);
- Interpretation of infrared spectra, identification of substances and functional groups;
- Statistical analysis and classification of spectra in the TQ Analyst program.
Stand with fixed bed reactor with vol. working 0.8 l, resistance furnace, gas overheating system, steam generator, gaseous reagent feed system and product receipt and gas micro chromatograph for determining the concentration of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, methane and hydrogen sulphide in the gaseous product. Maximum temperature is 900C, maximum pressure is 5 MPa.
Research on thermochemical processes of converting solid fuels, including pyrolysis, combustion, coal gasification, biomass and waste (e.g. industrial waste, sewage sludge) and their mixtures.
Laboratory of Solid Waste Analyses performes tests content of harmful environmental inorganic contaminates. According to the scope of accreditation the tests concern the following objects:
- Energy wastes, coal mining wastes, industrial and municipal wastes;
- Grounds;
- Soils;
- Mineral aggregates;
- The binders;
- Solid fuels;
- Alternative fuels;
- Solid biofuels.
We also have huge experience in working with other objects which are not in scope of the accreditation yet:
- Brown coals, cokes, atmospheric dust, dust filters with drown air, mineral resources, different types of sediments and other environmental samples.
The Laboratory performes tests in scope of accredited by the Polish Center for Accreditation:
- Moisture content analysis and total dry matter;
- Ash content and volative matter;
- Nitrogen, chlorine, chlorides, sulfur, hydrogen;
- Total organic carbon and inorganic carbon;
- Heat of combustion and calorific value;
- Chemical compositons: SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, SO3, TiO2, P2O5;
- Trace elements: arsenic As, barium Ba, cadmium Cd, cobalt Co, chromium Cr, copper Cu, Hg mercury, manganese Mn, molybdenum Mo, nickel Ni, lead Pb, antimony Sb, selenium Se, tin Sn, and Zn;
- Free CaO;
- Ammonium compounds (ammonium nitrogen);
- Size distribution by sieving and laser diffraction;
- The pH of the aqueous extracts.
Tests out of scope an accreditation are:
- True density, bulk density, water absorption, resistance to frost, specific surface area;
- Moisture of the distillation, volatile components;
- Available phosphorus, reactive silicon dioxide, sulfates soluble in acid and water;
- Fluorine, free cyanide and fixed cyanide, phenols, sulfides;
- Trace elements: boron B, bromine Br, beryllium Be, vanadium V, Sr strontium, thallium Tl;
- Rare earth metals: scandium Sc, yttrium Y, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, samarium Sm, europium Eu, gadolinium Gd, terbium Tb, dysprosium Dy, holmium Ho, erbium Er, thulium Tm, ytterbium Yb , lutetium Lu;
- Stearin, microspheres;
- The chemical resistance of the materials used in the production;
- Other according to customer.
Laboratory of Water and Wastewater Analysis performes researches related to the development of new procedures used in the analytics of natural waters and leachate with a high content of dissolved substances. We measure over a hundred physicochemical parameters in the samples using various measuring techniques, including most modern, for example:
- Inductively coupled plasma optical emission spectroscopy method (ICP-OES) to determine metals and non-metals;
- Mass spectrometry (ICP-MS) to determine trace elements;
- High temperature decomposition methods (TOC, total nitrogen, AOX analyzers);
- Ion chromatography (IC) for the determination of inorganic anions and for the determination of by-products of water disinfection;
- Flow techniques - flow injection analyzers (FIA) and continuous flow analyzers with segmented flow (SFA) with spectrophotometric detection for the determination of cyanides, phenol index, surfactants, ammonium ions, sulphide, sulphite etc.
The subject of research in the laboratory is:
- Drinking water;
- Mineral water and spring water;
- Thermal water and medicine water;
- Surface water;
- Groundwater (particularly mine waters, including brines);
- Leachates from waste dumping from closed excavations or landfills;
- Industrial and technological water;
- Industrial and municipal wastewater;
- Water extracts;
- Salts;
- Selected foodstuffs.
The Laboratory performes researches following parameters (in scope of the PCA accreditation):
- Adsorbable organically bound halogens (AOX);
- Ammonium ions;
- Nitrates;
- Ammonia nitrogen, nitrate and nitrite;
- Total nitrogen, organic nitrogen and Kjeldahl nitrogen;
- Nitrites;
- Colour;
- Biochemical oxygen demand after n days (BODn);
- Bromates, bromides, chlorates and chlorites;
- Chemical oxygen demand by dichromate method or permanganate method;
- Chlorides;
- Chromium (VI);
- Free cyanides, total cyanides and bound cyanides;
- Aggressive carbon dioxide and free carbon dioxide;
- Ether extract (substances extracted with petroleum ether);
- Fluorides;
- Formaldehyde;
- Phosphates;
- Phenol index (volatile phenols);
- Heavy metal index;
- Permanganate index;
- Iodides;
- Magnesium;
- Metals and non-metals (sodium, potassium, iron, manganese, cadmium, cobalt, copper, chromium, nickel, lead, zinc, silver, aluminum, arsenic, boron, bar, beryllium, bismuth, mercury, lanthanum, lithium, molybdenum, phosphorus , sulfur, antimony, selenium, silicon, tin, strontium, tellurium, titanium, thallium, vanadium, and zirconium);
- Turbidity;
- pH;
- Total organic carbon (TOC);
- Trace elements;
- Electrical conductivity;
- Sulfates, sulfides and sulfites;
- Non-dissociated hydrogen sulfide;
- Surface-active substances, anionic (anionic detergents, MBAS);
- Surface-active substances nonionic (nonionic detergents);
- Total dissolved solids, volatile and non-volatile dissolved solids;
- Dry residue, non-volatile and volatile;
- Dissolved oxygen;
- Total water hardness, carbonate and non-carbonate water hardness;
- Calcium;
- Carbonates, bicarbonates and hydroxides;
- Alkalinity;
- Suspended solids;
- Iron (II) and iron (III).
The Laboratory also researches some parameters out of scope of the PCA accreditation:
- Free and total chlorine;
- Chlorophyll;
- Density;
- Acidity;
- Volatile fatty acids;
- Rare earth metals ( ""lanthanides""),
- Some trace elements;
- Redox potential;
- Thiocyanates;
- Soluble organic compounds (with 254 nm absorbance and with 436 nm absorbance);
- Sum of the dissolved minerals;
- Thermal stability;
- Putrescibility;
- Threshold odour number (TON);
- Settleable suspended solids (Imhoff).
Laboratory of Solid Waste Analyses performes tests content of harmful environmental inorganic contaminates. According to the scope of accreditation the tests concern the following objects:
- Energy wastes, coal mining wastes, industrial and municipal wastes;
- Grounds;
- Soils;
- Mineral aggregates;
- The binders;
- Solid fuels;
- Alternative fuels;
- Solid biofuels.
We also have huge experience in working with other objects which are not in scope of the accreditation yet:
- Brown coals, cokes, atmospheric dust, dust filters with drown air, mineral resources, different types of sediments and other environmental samples.
The Laboratory performes tests in scope of accredited by the Polish Center for Accreditation:
- Moisture content analysis and total dry matter;
- Ash content and volative matter;
- Nitrogen, chlorine, chlorides, sulfur, hydrogen;
- Total organic carbon and inorganic carbon;
- Heat of combustion and calorific value;
- Chemical compositons: SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, SO3, TiO2, P2O5;
- Trace elements: arsenic As, barium Ba, cadmium Cd, cobalt Co, chromium Cr, copper Cu, Hg mercury, manganese Mn, molybdenum Mo, nickel Ni, lead Pb, antimony Sb, selenium Se, tin Sn, and Zn;
- Free CaO;
- Ammonium compounds (ammonium nitrogen);
- Size distribution by sieving and laser diffraction;
- The pH of the aqueous extracts.
Conducting measurement on machines and equipment (e.g., press alignment systems), monitoring of constructional structures - measuring and monitoring of geometric parameters of shafts and their equipment, including sunk ones.
The laboratory conducts research and service on the wide mineral engineering. Researches covers issues related to the identification of the chemical composition and mineral compositions and technological characteristics of the mineral and waste. The laboratory is equipped with modern digital scanning electron microscope Hitachi Model SU-3500N included with the EDS and the sputter device and Morphologi G3S-ID Malvern to analyze the size, shape and number of particles of the Raman adapter to identify the chemical composition. Laboratory is working on identification and optimization technical and technological conditions of valorization and acquisition of commercial products from minerals and waste.
We make the following laboratory tests about the technological characteristics of minerals and waste:
- Analysis of grain composition in the range of 0 - 200 mm;
- Analysis of density (density scan) coals in the full range of granulation;
- An assessment of the suitability of waste materials for hydraulic filling, road construction and hydro-technical and production of ceramics building;
- Physico - mechanical researches of binding materials (curing time, bulk density, fluidity, compressive strength and flexural strength, coefficient of softening);
- Technology research ashes and slogs from electrical power engineering to row material recovery;
- Assessment the morphological composition of municipal waste;
- Analysis of the hopper materials to liquidation coal pits;
- Research on new technologies using wastes;
- Research the materials using advanced microscopic techniques.
Experience of the staff of the laboratory and the technical equipment allows research and optimization following processes on a laboratory scale:
- Froth flotation of suspended coal and other raw materials;
- Sedimentation and refining of the suspensions;
- Conditioning and optimization of the quality parameters of mineral suspensions and sewage sludge for drainage;
- Dewatering mineral suspensions and sludge using method of pressure filtration and vacuum;
- We have the technical capabilities to carry out verification tests dewatering processes suspended sediment in the centrifuge and in the filter press in the full industrial scale.
We develop and consult:
- Concepts of enrichment technology of mineral raw materials;
- Programs of the mining wastes management;
- Instructions for the conduct of landfills;
- Applications for licenses / permits connected with waste management;
- Technologies water treatment out of mineral suspensions;
- Expertise in terms of achieving the environmental benefits of investments;
- Tools supporting the waste management.
- Physical-chemical analyses of deposit and sortment hard coals as well as of other solid fuels, such as lignite, coke, semi-coke, hard coal and lignite briquettes, solid biofuels, solid secondary fuels and mixtures of solid biofuels and a solid secondary fuels with coal;
- Technical analysis:
- Transient moisture determination Wexr,
- Moisture determination in the analytical sample Wa, (1)
- Calculating the total moisture Wtr (using Wexr and Wa),
- Determination of ash content Aa, (1)
- Determination of total sulphur content Sta (2)
- Determination of total sulphur content with the EschkiSta method, (3)
- Determination of combustion heat and the calorific value Qsa, Qir (4).
- Physical-chemical analysis:
- Determination of volatile elements Va, (1)
- Calculation the content of combustible elements (using Wa and Aa),
- Actual density determination dra, (5)
- Calculation of the fixedcarbonCfixed indicator (using the Wa, Aa and Va),
- Hardgrove's indicator of grinding susceptibility determination HGI, (6)
- Determination of the ash characteristic fusibility temperature, (7)
- Determination of the maximum capacity of the moisture absorption Wmax. (8)
- Elemental analysis:
- Determination of total carbon content Cta, (9)
- Calculation of the organic carbon content (using Cta and WCO2),
- Determination of total hydrogen content Hta (9)
- Determination of the nitrogen content Na, (9)
- Calculation of the oxygen content Oda (using the Wa, Aa, Cta, Hta, SCa),
- Determination of the carbonate CO2 content WCO2, (10)
- Calculation of the carbonate carbon content WC (using WCO2),
- Determination of sulphate sulphur (VI) SSO4a (11)
- Determination of the pyrite sulphur content Spa, (12)
- Calculation of organic sulphur in hard coal AND lignite Soa (using Sta, SSO4a and Spa),
- Determination of the ash sulphur content SAa (also using the Aa), (2)
- Calculation of combustible sulphur SCa (using the Sta and SAa),
- Determination of the chlorine content Cla, (13 and 14)
- Determination of the biodegradable fraction content. (15)
- Petrographic analysis:
- Determination of the vitrinite reflectance Ro, (16)
- Determination of the composition of groups of macerals and of mineral substance. (16)
- Analysis of coking parameters:
- Determination of the capacity of caking with the Rogi method RI, (17)
- Gray-King's determination of the type of coke GK, (18)
- Determination of the dilatometric indicators by Audibert-Arnu, (19)
- Determination of the swelling indicator SI, (20)
- Determination of the status plastic indicators according to Gieselera-Hoehnego, (21)
- Determination of plastometric properties using a plastometer with a fixed torque rotation, (22)
- Determination of plastometer icindicators according to Sapożnikow, (23)
- No pressure of the Pmax relaxation. (24)
- Coal type analysis.
- The determination of the international classification of coals.
- The designation of the international code.
- Assessment of the composition and properties of ash from coals.
- Analysis of ash and slags form utility boilers.
Other specialist tests outside accreditation:
- Composition of maceral groups and mineral substance with the semifusinite content designation. (16)
- Maceral composition. (16)
- Composition of microlithotype, carbominerite and minerite. (16)
- Maximum and minimum vitrinite reflectacne (determination of anisotropy)Rmax. (16)
- Designation of ash sulphur content in solid biofuels and solid secondary fuels. (2)
- Designation of sand content.
- Designation of losses at calcination.
- Total moisture content with the distillation method. (25)
- Apparent density.
- Forecast of coke strength with the Schapiro method for one-component coal.
- Effectiveness of low-temperature carbonization products. (26)
- Grain analysis with the screening method. (27)
- Density analysis.
- Free calcium oxide content.
- Designation of the transport susceptibility index. (28)
- Bright coal content.
- Stone content in coal.
- Magnetic weights analysis. (29)
- Heat capacity of solids.
- Spontaneous combustion indicator. (30)
- Angle of repose.
- Nitrogen content with the Kjeldahl method.
- Bulk density in coal, in coke from coal, in solid biofuel and in solid secondary fuel. (31)
- Enrichment tests. (32)
- Laboratory sieve checks.
- Production and distribution of standard and control samples.
- Analyses of solid fuels and furnance waste for the purpose of CO2 emissions;
- Waste analyses (code: 10 01 excluding 10 01 09);
- Performing analyses for arbitration samples in disputes;
- Comprehensive tests organization, in cooperation with other laboratories of the Central Mining Institute;
- Perforing proficiency testing by interlaboratory comparison of coal, solid biofuel and solid secondary fuels (33).
Laboratory of Solid Waste Analyses performes tests in scope of accredited by the Polish Center for Accreditation:
- Moisture content analysis and total dry matter;
- Ash content and volative matter;
- Nitrogen, chlorine, chlorides, sulfur, hydrogen;
- Total organic carbon and inorganic carbon;
- Heat of combustion and calorific value;
- Chemical compositons: SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, SO3, TiO2, P2O5;
- Trace elements: arsenic As, barium Ba, cadmium Cd, cobalt Co, chromium Cr, copper Cu, Hg mercury, manganese Mn, molybdenum Mo, nickel Ni, lead Pb, antimony Sb, selenium Se, tin Sn, and Zn;
- Free CaO;
- Ammonium compounds (ammonium nitrogen);
- Size distribution by sieving and laser diffraction;
- The pH of the aqueous extracts.
Tests out of scope an accreditation are:
- True density, bulk density, water absorption, resistance to frost, specific surface area;
- Moisture of the distillation, volatile components;
- Available phosphorus, reactive silicon dioxide, sulfates soluble in acid and water;
- Fluorine, free cyanide and fixed cyanide, phenols, sulfides;
- Trace elements: boron B, bromine Br, beryllium Be, vanadium V, Sr strontium, thallium Tl;
- Rare earth metals: scandium Sc, yttrium Y, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, samarium Sm, europium Eu, gadolinium Gd, terbium Tb, dysprosium Dy, holmium Ho, erbium Er, thulium Tm, ytterbium Yb , lutetium Lu;
- Stearin, microspheres;
- The chemical resistance of the materials used in the production;
- Other according to customer.
The Laboratory performes researches in accordance with applicable legal regulations - Polish law:
- Ustawa o odpadach z dnia 8 stycznia 2013 roku (Dz. U. poz. 21);
- Rozporządzenie Ministra Środowiska z dnia 8 czerwca 2016r., w sprawie warunków technicznych kwalifikowania części energii odzyskanej z termicznego przekształcania odpadów (Dz.U. poz. 847);
- Rozporządzenie Ministra Gospodarki z dnia 22 stycznia 2016r., w sprawie wymagań dotyczących termicznego przekształcania odpadów oraz sposobów postępowania z odpadami powstającymi w wyniku tego procesu (Dz.U. poz. 108);
- Rozporządzenie Ministra Środowiska z dnia 11 maja 2015r., w sprawie odzysku odpadów poza instalacjami i urządzeniami (Dz.U. poz. 796);
- Rozporządzenie Ministra Gospodarki z dnia 16 lipca 2015r., w sprawie kryteriów oraz procedur dopuszczania odpadów do składowania na składowisku odpadów danego typu, (Dz. U. poz. 1277).
We measure physicochemical parameters in the samples using various measuring techniques, including most modern, for example:
- Inductively coupled plasma optical emission spectroscopy method (ICP-OES) to determine metals and non-metals.
Laboratory of Solid Waste Analyses performes tests content of harmful environmental inorganic contaminates. According to the scope of accreditation the tests concern the following objects:
- Energy wastes, coal mining wastes, industrial and municipal wastes;
- Grounds;
- Soils;
- Mineral aggregates;
- The binders;
- Solid fuels;
- Alternative fuels;
- Solid biofuels.
We also have huge experience in working with other objects which are not in scope of the accreditation yet:
- Brown coals, cokes, atmospheric dust, dust filters with drown air, mineral resources, different types of sediments and other environmental samples.
Laboratory of Water and Wastewater Analysis performes researches of:
- Drinking water;
- Mineral water and spring water;
- Thermal water and medicine water;
- Surface water;
- Groundwater (particularly mine waters, including brines);
- Leachates from waste dumping from closed excavations or landfills;
- Industrial and technological water;
- Industrial and municipal wastewater;
- Water extracts;
- Salts;
- Selected foodstuffs.
- System solutions for rainwater management;
- Water resources management programming in the catchment area (Water Framework Directive and Floods Directive);
- Modelling of hydrological phenomena;
- Revitalisation of rivers, management of river areas and hydromorphological assessment;
- Technical and economic concepts and plans for water reservoir revitalisation.
- Sampling of coal in accordance with the PN-0659-G-04502:2014-11 standard at the producers' and consumers' premises, within the scope of the accreditation (accreditation number AB 069) or the supervision of sampling for laboratory testing (34);
- Sampling of storage sites on the premises of the producers and consumers of solid fuels (solid biofuels, solid secondary fuels or furnace waste);
- Sampling of block train and automotive transports on the premises of producers and recipients of solid fuels, at loading or unloading (35);
- Quantitative research of solid fuels landfills (geodetic measuring, determination of volumetric and/or bulk weight);
- Checking the accuracy and precision of the collection and preparation of samples of coal by automatic samplers in accrodance with the applicable technical standard PN-G-04502:2014-11, within the scope of the accreditation (accreditation number AB 069);
- Checking the accuracy and precision of the sampling and sample preparation of solid fuels (hard coal, lignite, solid biofuel and solid secondary fuel) by automatic samplers in acordance with the applicable technical standards PN and ISO;
- Counselling at designing systems for sampling of solid fuels, solid biofuels, solid secondary fuels from technological strings and transports.
Laboratory of Mineral Processing and Waste Management conducts research and service on the wide mineral engineering. Researches covers issues related to the identification of the chemical composition and mineral compositions and technological characteristics of the mineral and waste. The laboratory is equipped with modern digital scanning electron microscope Hitachi Model SU-3500N included with the EDS and the sputter device and Morphologi G3S-ID Malvern to analyze the size, shape and number of particles of the Raman adapter to identify the chemical composition. Laboratory is working on identification and optimization technical and technological conditions of valorization and acquisition of commercial products from minerals and waste.
Experience of the staff of the laboratory and the technical equipment allows research and optimization following processes on a laboratory scale:
- Froth flotation of suspended coal and other raw materials;
- Sedimentation and refining of the suspensions;
- Conditioning and optimization of the quality parameters of mineral suspensions and sewage sludge for drainage;
- Dewatering mineral suspensions and sludge using method of pressure filtration and vacuum.
We have the technical capabilities to carry out verification tests dewatering processes suspended sediment in the centrifuge and in the filter press in the full industrial scale.
- Innovative technologies for the management of sewage sludge for realization of natural and energy goals;
- Intensification of aerobic and anaerobic sewage sludge digestion at the wastewater treatment plants;
- Technical-economic analysis of technological solution for the sewage sludge digestion;
- Environmental and legal analysis and expertises in terms of the sewage sludge management.
Laboratory of Solid Waste Analyses performes tests content of harmful environmental inorganic contaminates. According to the scope of accreditation the tests concern the following objects:
- Energy wastes, coal mining wastes, industrial and municipal wastes;
- Grounds;
- Soils;
- Mineral aggregates;
- The binders;
- Solid fuels;
- Alternative fuels;
- Solid biofuels.
We also have huge experience in working with other objects which are not in scope of the accreditation yet:
- Brown coals, cokes, atmospheric dust, dust filters with drown air, mineral resources, different types of sediments and other environmental samples.
The Laboratory performes tests in scope of accredited by the Polish Center for Accreditation:
- Moisture content analysis and total dry matter;
- Ash content and volative matter;
- Nitrogen, chlorine, chlorides, sulfur, hydrogen;
- Total organic carbon and inorganic carbon;
- Heat of combustion and calorific value;
- Chemical compositons: SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, SO3, TiO2, P2O5;
- Trace elements: arsenic As, barium Ba, cadmium Cd, cobalt Co, chromium Cr, copper Cu, Hg mercury, manganese Mn, molybdenum Mo, nickel Ni, lead Pb, antimony Sb, selenium Se, tin Sn, and Zn;
- Free CaO;
- Ammonium compounds (ammonium nitrogen);
- Size distribution by sieving and laser diffraction;
- The pH of the aqueous extracts.
Tests out of scope an accreditation are:
- True density, bulk density, water absorption, resistance to frost, specific surface area;
- Moisture of the distillation, volatile components;
- Available phosphorus, reactive silicon dioxide, sulfates soluble in acid and water;
- Fluorine, free cyanide and fixed cyanide, phenols, sulfides;
- Trace elements: boron B, bromine Br, beryllium Be, vanadium V, Sr strontium, thallium Tl
- Rare earth metals: scandium Sc, yttrium Y, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, samarium Sm, europium Eu, gadolinium Gd, terbium Tb, dysprosium Dy, holmium Ho, erbium Er, thulium Tm, ytterbium Yb , lutetium Lu;
- Stearin, microspheres;
- The chemical resistance of the materials used in the production;
- Other according to customer.
The Department of Solid Fuels Quality Assessment has worked continuously since 1945. Its highly skilled personnel, modern equipment and efficient management system ensure the accuracy, timeliness and reliability of the performed tests. The Department conducts tests of solid fuels, solid biofuels, solid secondary fuels, mixtures of solid biofuels and solid secondary fuels with solid fuels and of waste (code 10 01 excluding 10 01 09).
The Department has:
- The Certificate of a Research Laboratory Accreditation issued by the Polish Centre for Accreditation, confirming the meeting of the requirements of the PN-EN ISO/IEC 17025:2005 + Ap1:2007 + AC: 2007 standard (accreditation number: AB 069);
- The Certificate of Approval issued by Lloyd's Register (Poland) Sp. z o.o. on behalf of Lloyd's Register Quality Assurance Limited, certifying that the Quality Management System is in compliance with the ISO 9001:2008 standard (Certificate of Approval number: GDK0003151/Q).
- Preparation of application materials in the field of urban engineering and the environment (application forms, feasibility studies, business plans);
- Analysis and evaluation of economic and ecological effectiveness of investments (e.g. financial analysis, CBA, MCA, DGC);
- Comprehensive administrative decision-making support, including preparation of necessary documents and institutional and social consultations;
- Strategic, programmatic, national, regional and local development (including development strategies, environmental programs, local revitalization programs);
- Analysis of socio-economic, spatial and environmental issues using scenario and foresight methods.
- Consulting on the introduction of management systems in research laboratories;
- Developing and counselling on the implementation of sampling procedures for solid fuels and furnace waste;
- Verification of sampling plans of solid fuels and furnace waste (36);
- Validation (checking and precision determination) for sampling procedures of solid fuels and furnace waste used in power plants;
- Carrying out internal audits in research laboratories in accordance with the PN-EN ISO/IEC 17025:2005+Ap1:2007+AC: 2007 standards and other documents of the Polish Centre for Accreditation;
- Estimating losses during transport and storage.
- Assessment of the quality of solid fuels for the possibility of use in different technological processes;
- Selection, based on the database of the Information Bank, of coal for users taking into account technological and environmental conditions;
- Conducting forecast research on the quality of raw coal to adapt to the extraction programs of mines.
Advanced Energy Technology Laboratory
SDT Q600 thermogravimetric analyzer.
Thermal analysis: differential scanning calorimetry (DSC) and thermogravimetric analysis. Measurement of heat flow and mass changes associated with phase transformation and / or reactions in the test samples. The obtained information includes endo- and exothermic transformations not related to the mass loss process (e.g. melting and crystallization) and those related to the mass loss process (decomposition of the sample). Measuring range from ambient to 1500 ° C, heating speed 0.1-100C / min, sensitivity 0.1 μg.
Thermogravimetric pressure analyzer Rubotherm GmbH. Measurements of mass changes in the sample depending on the heating rate, temperature and pressure in an inert atmosphere or in the presence of a wide range of gaseous reagents. Maximum temperature 1350C under non-pressurized conditions and 1100C at maximum pressure 4 MPa. Sample weight of 1 g.
Autosorb iQ gas and steam sorption analyzer coupled with TPR / TPO / TPD analyzer Temperature-controlled programmable reduction, oxidation and desorption studies. Measuring range up to 1100C.
- Technologies for municipal and industrial wastewater treatment;
- Optimization of existing technological solutions and intensification of wastewater treatment processes;
- Evaluation of the effectiveness of water and sewage management (technical concepts and agglomerations plans).
- Water purification technologies for drinking and industrial purposes;
- Environmental and legal analysis and expertise in terms of water utilisation conditions;
- Modelling and qualitative - quantitative balancing of surface water and groundwater;
- Modelling of hydrochemical phenomena.
Laboratory of Water and Wastewater Analysis is a part of Department of Environmental Monitoring in the Central Mininig Institute.
Many years of experience in the researches of the environment, qualified staff, modern analytical equipment and also the application of the principles of good laboratory practices, made it possible in 1997 to implement the management system that meets the requirements of standards and documents (PN-EN ISO/IEC 17025:2005). The credibility of research and technical competence of the Laboratory has been certified by accredited No. AB 145. Laboratory performs researches in the Institute, which implemented the Integrated Management System that meets the requirements of PN-EN ISO 9001, EN-18001 and PN-EN ISO 14001.
Laboratory performes researches related to the development of new procedures used in the analytics of natural waters and leachate with a high content of dissolved substances. Laboratory staff is taking part in the Polish Committee for Standardization Section for Inorganic Chemistry Water Quality. Laboratory examines more than 3000 physicochemical samples per year according to customer requirements in the area of mining industry, energy, food, pharmaceutical, environmental protection services and others.
We measure over a hundred physicochemical parameters in the samples using various measuring techniques, including most modern, for example:
- inductively coupled plasma optical emission spectroscopy method (ICP-OES) to determine metals and non-metals;
- mass spectrometry (ICP-MS) to determine trace elements;
- high temperature decomposition methods (TOC, total nitrogen, AOX analyzers);
- ion chromatography (IC) for the determination of inorganic anions and for the determination of by-products of water disinfection;
- flow techniques – flow injection analyzers (FIA) and continuous flow analyzers with segmented flow (SFA) with spectrophotometric detection for the determination of cyanides, phenol index, surfactants, ammonium ions, sulphide, sulphite etc.
The subject of research in the laboratory is:
- drinking water;
- mineral water and spring water;
- thermal water and medicine water;
- surface water;
- groundwater (particularly mine waters, including brines);
- leachates from waste dumping from closed excavations or landfills;
- industrial and technological water;
- industrial and municipal wastewater;
- water extracts;
- salts;
- selected foodstuffs.
The Laboratory performes researches following parameters (in scope of the PCA accreditation):
- adsorbable organically bound halogens (AOX),;
- ammonium ions;
- nitrates;
- ammonia nitrogen, nitrate and nitrite;
- total nitrogen, organic nitrogen and Kjeldahl nitrogen;
- nitrites;
- colour;
- biochemical oxygen demand after n days (BODn);
- bromates, bromides, chlorates and chlorites;
- chemical oxygen demand by dichromate method or permanganate method;
- chlorides;
- chromium (VI);
- free cyanides, total cyanides and bound cyanides;
- aggressive carbon dioxide and free carbon dioxide;
- ether extract (substances extracted with petroleum ether);
- fluorides;
- formaldehyde;
- phosphates;
- phenol index (volatile phenols);
- heavy metal index;
- permanganate index;
- iodides;
- magnesium;
- metals and non-metals (sodium, potassium, iron, manganese, cadmium, cobalt, copper, chromium, nickel, lead, zinc, silver, aluminum, arsenic, boron, bar, beryllium, bismuth, mercury, lanthanum, lithium, molybdenum, phosphorus , sulfur, antimony, selenium, silicon, tin, strontium, tellurium, titanium, thallium, vanadium, and zirconium);
- turbidity;
- pH;
- total organic carbon (TOC);
- trace elements;
- electrical conductivity;
- sulfates, sulfides and sulfites;
- non-dissociated hydrogen sulfide;
- surface-active substances, anionic (anionic detergents, MBAS);
- surface-active substances nonionic (nonionic detergents);
- total dissolved solids, volatile and non-volatile dissolved solids;
- dry residue, non-volatile and volatile;
- dissolved oxygen;
- total water hardness, carbonate and non-carbonate water hardness;
- calcium;
- carbonates, bicarbonates and hydroxides;
- alkalinity;
- suspended solids;
- iron (II) and iron (III).
The Laboratory also researches some parameters out of scope of the PCA accreditation:
- free and total chlorine;
- chlorophyll;
- density;
- acidity;
- volatile fatty acids;
- rare earth metals ( ""lanthanides"");
- some trace elements;
- redox potential;
- thiocyanates;
- soluble organic compounds (with 254 nm absorbance and with 436 nm absorbance);
- sum of the dissolved minerals;
- thermal stability;
- putrescibility;
- threshold odour number (TON);
- settleable suspended solids (Imhoff).
Moreover, the Laboratory of Water and Wastewater Analysis evaluates corrosivity of water against concrete and steel (on the basis of physical and chemical analysis) and performs tests of water used to prepare concrete. Laboratory also carries out the migration test (determination of the effect of material for drinking water) and researches also different kind of salt (food salt, road salt and bathing salt).
Scope of activities:
- Diagnosis of organizational, competency and social determinants of safety in work environment - especially in high-risk enterprises (own research tools verified by the PBS project);
- Diagnosis of safety culture state in enterprise (own research tools - verified in coal and copper mining);
- Safety culture improving in enterprise using its own method, which effectiveness has been proven in mining company;
- Identification of risky behaviors of employees and their causes.
Laboratory of Solid Waste Analyses performes tests content of harmful environmental inorganic contaminates. According to the scope of accreditation the tests concern the following objects:
- Energy wastes, coal mining wastes, industrial and municipal wastes;
- Grounds;
- Soils;
- Mineral aggregates;
- The binders;
- Solid fuels;
- Alternative fuels;
- Solid biofuels.
We also have huge experience in working with other objects which are not in scope of the accreditation yet:
- Brown coals, cokes, atmospheric dust, dust filters with drown air, mineral resources, different types of sediments and other environmental samples.
The Laboratory performes tests in scope of accredited by the Polish Center for Accreditation:
- Chemical compositons: SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, SO3, TiO2, P2O5;
- Trace elements: arsenic As, barium Ba, cadmium Cd, cobalt Co, chromium Cr, copper Cu, Hg mercury, manganese Mn, molybdenum Mo, nickel Ni, lead Pb, antimony Sb, selenium Se, tin Sn, and Zn.
Tests out of scope an accreditation are:
- Trace elements: boron B, bromine Br, beryllium Be, vanadium V, Sr strontium, thallium Tl;
- Rare earth metals: scandium Sc, yttrium Y, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, samarium Sm, europium Eu, gadolinium Gd, terbium Tb, dysprosium Dy, holmium Ho, erbium Er, thulium Tm, ytterbium Yb , lutetium Lu.
Division of Ecological Researches uses modern equipment:
- X-ray diffractometer (XRD) D8 DISCOVER BRUKER with modern goniometer, equipped with a mirror Goebel, detectors for measuring 1D - Lynxeye and 2D - Vantec autosampler 500; it allows the determination of the crystalline phase in solids such as soil, land, waste fuels, composites, raw materials and minerals and many others. Owned diffractometer BRUKER D8 DISCOVER as a modern tool used in the works of a scientific-research projects and scientific work in the industrial, mining and other sectors.
Division uses highly specialized software to interpretation of the measurement results and visualization:
- DIFFRAC.EVA v.3.0. - interpretation quality mineral phases in X-ray diffraction method (XRD);
- PDF-4 + v.4.12.0.4. - licensed ICDD data base for X-ray diffraction (XRD);
- TOPAS v.4.2. - interpretation of quantitative mineralogical phases in X-ray diffraction method (XRD).